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Proteomics of brain, CSF, and plasma identifies
molecular signatures for distinguishing sporadic and
genetic Alzheimer’s disease
Yun Ju Sung1,2,3, Chengran Yang1,2, Joanne Norton1,2, Matt Johnson1,2, Anne Fagan4,5,
Randall J. Bateman4,5, Richard J. Perrin4,5,6, John C. Morris4,5,6, Martin R. Farlow7,
Jasmeer P. Chhatwal8, Peter R. Schofield9,10, Helena Chui11, Fengxian Wang1,2, Brenna Novotny1,
Abdallah Eteleeb1, Celeste Karch1,2, Suzanne E. Schindler4,5, Herve Rhinn12, Erik C. B. Johnson13,
Hamilton Se-Hwee Oh14, Jarod Evert Rutledge14, Eric B. Dammer13, Nicholas T. Seyfried13,15,
Tony Wyss-Coray14, Oscar Harari1, Carlos Cruchaga1,2,4*

Proteomic studies for Alzheimer’s disease (AD) are instrumental in identifying AD pathways but often focus on
single tissues and sporadic AD cases. Here, we present a proteomic study analyzing 1305 proteins in brain tissue,
cerebrospinal fluid (CSF), and plasma from patients with sporadic AD, TREM2 risk variant carriers, patients with
autosomal dominant AD (ADAD), and healthy individuals. We identified 8 brain, 40 CSF, and 9 plasma proteins
that were altered in individuals with sporadic AD, and we replicated these findings in several external datasets.
We identified a proteomic signature that differentiated TREM2 variant carriers from both individuals with spora-
dic AD and healthy individuals. The proteins associated with sporadic AD were also altered in patients with
ADAD, but with a greater effect size. Brain-derived proteins associated with ADAD were also replicated in ad-
ditional CSF samples. Enrichment analyses highlighted several pathways, including those implicated in AD (cal-
cineurin and Apo E), Parkinson’s disease (α-synuclein and LRRK2), and innate immune responses (SHC1, ERK-1,
and SPP1). Our findings suggest that combined proteomics across brain tissue, CSF, and plasma can be used to
identify markers for sporadic and genetically defined AD.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common cause of dementia,
reducing the quality of life among patients and caregivers (1). AD is
characterized by amyloid β (Aβ)–containing plaques and tau neu-
rofibrillary tangles in the brain, resulting in neuronal loss, neuroin-
flammation, and memory decline (2). AD is genetically
heterogeneous. Around 1 to 3% of cases are autosomal dominant
AD (ADAD), carrying pathogenic variants in genes such as
amyloid precursor protein (APP), presenilin-1 (PSEN1), and
PSEN2, normally with onset before 65 years old (3). Most other
AD cases are considered sporadic and manifest after 65 years old
(4). We and others have identified several rare coding variants in

triggering receptor expressed on myeloid cells 2 (TREM2) that in-
crease the risk to develop AD by almost twofold, making TREM2
the second strongest genetic risk factor for sporadic AD after apo-
lipoprotein E (APOE) (5, 6). Proteomic profiling of genetically
defined AD subtypes, including individuals with AD risk variants
in TREM2 and ADAD cases, is important for fully understanding
the biology of this heterogeneous disease and for identifying AD
subtype–specific molecular markers and therapeutic targets.

Timely diagnosis of AD is critical in clinical practice. Neurofila-
ment light chain (NFL), Aβ42, Aβ42/40 ratio, and phospho-tau181
(p-tau) are cerebrospinal fluid (CSF) protein biomarkers (7), and
there are also several noninvasive plasma biomarkers, including
Aβ42/40 ratio, p-tau217, p-tau231, and glial fibrillary acidic
protein (GFAP) (7–9). Identification of additional marker signa-
tures in CSF and plasma is important; hence, signatures may be
more effective disease-modifying targets. Even for clinical trials
and therapies that target identified proteins, additional markers
that do not depend on the target protein are needed to monitor a
treatment outcome. Therefore, it is important to develop prediction
models that are independent of Aβ and tau pathology.

To identify proteomic profiles for sporadic AD and for geneti-
cally defined AD subtypes (carriers for TREM2 risk variants and
individuals with ADAD), we measured 1305 proteins in brain,
CSF, and plasma from the Knight Alzheimer Disease Research
Center (Knight ADRC) and Dominantly Inherited Alzheimer
Network (DIAN) cohorts (3, 10). We identified a set of proteins
that were differentially altered in sporadic AD and genetically
defined AD cases. Many of these proteins were successfully validat-
ed through several independent cohorts using multiple orthogonal
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platforms. The replicated proteins were used to create brain-, CSF-,
and plasma-specific prediction models and to identify the pathways
leading to the disease. We also built a web portal (omics.wustl.edu/
proteomics) to support interactive visualization and exploration for
the scientific community.

RESULTS
Proteomic signatures of sporadic AD
To identify proteomic changes that were associated with sporadic
AD across brain, CSF, and plasma, we quantified 1305 proteins
using a multiplexed, single-stranded DNA aptamer assay developed
by SomaLogic (11). After standard data processing, normalization,
and quality control (QC) (Supplementary Materials and Methods),
differential abundance analysis was performed on the remaining
1092 proteins in autopsy brain tissue from 290 patients with neuro-
pathologically confirmed AD and 25 cognitively normal individuals
with no brain pathology. Differential abundance analysis was also

performed on 713 proteins in CSF samples from 176 patients
with AD and 494 healthy controls and on 931 proteins in plasma
samples from 105 patients with AD and 254 healthy controls
(Fig. 1). In this analysis, genetically defined ADs (TREM2 variant
carriers and ADAD) were excluded. Sample size and patient char-
acteristics are summarized in Table 1. The correlation matrix of
these proteomic data is shown in fig. S1. A web portal (omics.
wustl.edu/proteomics) was created to facilitate both exploration of
our analysis and further investigation into individual proteins
across disease status or sex (fig. S2). We performed surrogate vari-
able (SV) analysis (12) to remove batch effects and other unmea-
sured heterogeneity in the proteomic data. We then performed
regression analysis with log-transformed protein abundance as a
dependent variable and sporadic AD status as an independent var-
iable while including age, sex, and SVs as covariates. Results were
not different when the technical batch was used instead of SVs
(figs. S3 and S4). Instead of false discovery rate (FDR), we used a
more stringent multiple test correction based on the number of

Fig. 1. Study outline. In the discovery stage, protein measures in brain, CSF, and plasma samples were obtained with SOMAscan targeting 1305 proteins from Knight
ADRC and DIAN participants with comprehensive clinical information about AD pathology and cognition. This discovery cohort contained patients with sporadic AD (290
brain, 176 CSF, and 105 plasma samples), TREM2 risk variant carriers (21 brain, 47 CSF, and 131 plasma samples), patients with ADAD (24 brain samples), and healthy
controls (25 brain, 494 CSF, and 254 plasma samples). Differential abundance analyses were performed for sporadic AD status, TREM2 risk variant carrier status, and ADAD
status. Several publicly available external proteomic datasets were used to replicate our findings (details in Supplementary Materials and Methods). Last, replicated
proteins were used for creating prediction models for brain tissue, CSF, and plasma and pathway enrichment analysis. In addition, we built a web portal (omics.wustl.
edu/proteomics) to support interactive visualization and exploration (fig. S2).
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independent proteins (see Supplementary Materials and Methods).
Several publicly available datasets were downloaded and analyzed to
replicate our findings in the discovery cohort (table S1 and Fig. 1).
Brain proteomic profiles for sporadic AD
In the brain, 12 proteins showed significant association with AD
status (Fig. 2A; see table S2 for P values). All these proteins were
also significantly associated with other AD-related traits, including
age at onset and AD neuropathological characteristics [such as
Braak scores and clinical dementia rating (CDR) (13) at death]
(figs. S5 and S6; see table S3 for P values). To examine consistency
across brain, CSF, and plasma, we checked whether these proteins
were also associated with AD risk or onset in CSF and plasma. Of
the 12 brain proteins associated with AD status, only 6 were found
in both CSF and plasma samples. Of these, five proteins [SPARC-
related modular calcium-binding protein 1 (SMOC1), hepatocyte
growth factor (HGF), follistatin-like 1 (FSTL1), ubiquitin-conjugat-
ing enzyme E2 (UBC9), and neuroepithelial cell transforming 1
(NET1)] were associated with AD status or age at onset in both
CSF and plasma data (P < 0.05; table S2), which represents a 333-
fold enrichment (P = 5.8 × 10−13) to what would be expected
by chance.

To replicate our findings in the discovery cohort, we downloaded
the mass spectrometry data from the Adult Changes in Thought
(ACT), Banner Sun Health Research Institute (BANNER), Balti-
more Longitudinal Study of Aging (BLSA), Mayo Clinic (MAYO),
Mount Sinai Brain Bank (MSBB), and the Religious Orders Study
and the Memory and Aging Project (ROSMAP). We integrated
these mass spectrometry datasets including 10,078 proteins from
415 patients with AD and 194 controls (referred as MassSpec
Joint) and subsequently performed differential abundance analysis
for AD status (table S4). Of the nine proteins that were present in
these datasets, eight replicated [Midkine, SMOC1, chromogranin-A
(CgA), HGF, neurexin-1-β (NRX1B), UBC9, NET1, and serum
amyloid P-component (SAP)] with the consistent direction at P <
0.05 (Fig. 2D). This represents a 35-fold enrichment to what would
be expected by chance (P = 1.3 × 10−12). In addition, to confirm that
our results were not false positives due to the joint analysis that

included six studies, we checked the published results of each indi-
vidual study [Johnson et al. (14), Higginbotham et al. (15), and
Wingo et al. (16)]. Individual study analysis also provided 25- to
34-fold enrichments (table S1). Overall protein changes with AD
status in our discovery data and the merged replication data, MassS-
pec Joint, were similar (P < 3.6 × 10−3; fig. S7A). Here, we identified
12 proteins that were altered in brain tissue from patients with
sporadic AD, of which 5 were validated in CSF and plasma and 8
were replicated in the external datasets that had been generated
with orthogonal proteomic platforms.
CSF proteomic profiles for sporadic AD
In CSF, 117 proteins were significantly associated with clinical AD
status (Fig. 2B; see table S5 for P values). Of these 117 proteins, 78
were also found in brain and plasma, and 27 proteins [including ex-
tracellular signal–regulated kinase 1 (ERK-1) and leucine-rich
repeat kinase 2 (LRRK2)] were validated across brain tissue, CSF,
and plasma (138-fold enrichment, P = 3.3 × 10−50). For external
replication, we obtained and analyzed Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) multiple reaction monitoring (MRM)
proteomic data. We also used results based on BioFinder OLINK
data fromWhelan et al. (17) and Emory-ADRC mass spectrometry
data from Higginbotham et al. (15). Of the 117 CSF proteins iden-
tified in the discovery cohort, 90 were present in external datasets
(tables S5 and S6). In these external datasets, 40 proteins [including
14-3-3, calcineurin, SMOC1, GFAP, secreted phosphoprotein 1
(SPP1), and peroxiredoxin-1 (PRDX1)] were replicated at P <
0.05 and in the consistent direction (14- to 34-fold enrichments,
P ≤ 4.4 × 10−5; Fig. 2D). Separately in the ADNI data (320 CSF
samples), 8 proteins were available among the 117 identified in dis-
covery, and 7 were replicated. In Higginbotham et al. (15), there
were 88 proteins among our identified proteins, and 34 were repli-
cated. We speculate that a small sample size of this study (N = 40) is
a primary reason for a limited power in replicating the discovery
findings. The correlation of altered protein changes between discov-
ery and replication data was strong (r = 0.43 to 0.82, P < 3.4 × 10−7;
fig. S7B). We therefore expect that more proteins would replicate in
larger studies.
Plasma proteomic profiles for sporadic AD
In plasma, 26 proteins were associated with sporadic AD status after
themultiple testing correction (Fig. 2C and table S7). Similar to pre-
vious analyses, we leveraged data from brain tissue, CSF, and plasma
to replicate these findings. Of the 26 plasma proteins associated with
AD status, 16 were found in brain and CSF, and 7 proteins [includ-
ing ERK-1, cell adhesion–associated, oncogene regulated (CDON),
and SHC-adaptor protein 1 (SHC1)] were replicated (175-fold en-
richment, P = 6.8 × 10−15). For external replication, we downloaded
and analyzed the AddNeuroMed SOMAscan 1.1K proteomic data
that were processed and deposited by Sattlecker et al. (18). Of 26
associated proteins, we were able to test 19 in these data (table
S8). Nine proteins (including CAMK2D andHMG-1) were replicat-
ed (Fig. 2D). This represented a 18.9-fold enrichment (P = 2.8 ×
10−10) to what would be expected by chance.

Here, we identified 8 proteins in brain, 40 proteins in CSF, and 9
proteins in plasma that were altered by AD status through a tradi-
tional discovery and replication strategy by leveraging several exter-
nal proteomic datasets generated from orthogonal platforms. They
included Apo E2 and SMOC1 and other previously identified pro-
teins (table S9) related to amyloid/tau pathology. Several proteins
identified in this study showed a very weak correlation with CSF

Table 1. Summary characteristics of participants with proteomic
measures in the Knight ADRC and DIAN cohorts. CO, healthy control;
AD, sporadic AD cases; TREM2, AD risk variant (p.E151K, p.H157Y, p.L211P,
p.R136Q, p.R163Q, p.R47H, p.R62H, and p.T96K) carriers in TREM2.

Origin Status Sample size (N ) % Female Age (mean ± SD)

Brain CO 25 61.72 88.24 ± 8.85

AD 290 33.33 83.98 ± 8.83

ADAD 24 76.00 55.67 ± 14.58

TREM2 21 57.14 82.57 ± 7.62

CSF CO 494 55.26 73.15 ± 6.43

AD 176 46.02 74.60 ± 7.02

TREM2 47 44.68 74.00 ± 6.48

Plasma CO 254 57.48 71.53 ± 7.31

AD 105 37.14 72.59 ± 7.67

TREM2 131 64.89 74.98 ± 8.17
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Aβ42 (median correlation value for Aβ42 was 0.06 in brain, 0.002 in
CSF, and 0.04 in plasma). Whereas CSF proteins were modestly cor-
related with CSF p-Tau181 (median correlation = 0.35), proteins in
brain and plasmawere very weakly correlated (median correlation =
−0.03 and 0.006, respectively). Correlation plots for all these exter-
nally replicated proteins are in fig. S8.

Because in some scenarios it may not be possible to use indepen-
dent datasets for replication, we tested whether protein identifica-
tion across brain tissue, CSF, and plasma can serve as an alternative
option for replication. An enrichment test showed that the proteins
in brain tissue, CSF, and plasma were more likely to be replicated in
external independent datasets than proteins identified in samples of

Fig. 2. Proteomic profiling of sporadic AD and external replication. (A to C) Volcano plots displaying the log2 fold change (x axis) against statistical significance (y axis)
for all proteins tested for differential abundance between control (CO) and AD cases of the brain (A), CSF (B), and plasma (C) discovery proteome. The blue points show the
proteins significant at the multiple testing–corrected threshold. Although the top 10 proteins are labeled here, the volcano plots in the web portal (omics.wustl.edu/
proteomics) support interactive exploration for all proteins. (D) Summary showing the number of identified and externally replicated brain, CSF, and plasma proteins. (E to
J) Receiver operating characteristic (ROC) curves show the performance of externally replicated proteins (8 in brain, 40 in CSF, and 9 in plasma) for the discrimination of
patients with AD and healthy controls (CO) for both discovery [(E) in brain, (F) in CSF, and (G) in plasma] and replication data [(H) in brain, (I) in CSF, and (J) in plasma]. Sex
and age were included as covariates for all models. “None” corresponds to the model including age and sex only, without any proteins or other biomarkers. In CSF, a
model with a subset of 12 proteins was also examined (in green curve). Replication data were MassSpec Joint combining all mass spectrometry–based cohorts in brain,
Emory-ADRC mass spectrometry data in CSF, and AddNeuroMed in plasma.
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a single origin (15- to 40-fold enrichments, P ≤ 3.63 × 10−3; table
S10). This suggests that multitissue and fluid proteomic data can be
used as a viable replication strategy to support the findings.
Proteomic profiles based on AD biomarkers
Most AD biomarker studies in CSF and plasma published so far ex-
amined clinical AD status and not biomarker-based status (18). To
allow for an easy comparison with these earlier studies, we also per-
formed our analysis using clinical status as AD classifier. However,
several studies indicated that up to 30% of cognitively normal
elderly individuals could be presymptomatic for AD (19) and that
other neurodegenerative diseases can clinically masquerade as AD
dementia (20). It was shown that the CSF p-tau/Aβ42 ratio is a gold-
standard biomarker not only for AD status but also for predicting
AD progression from normal to dementia within 5 years (10). To
examine whether our findings based on clinical status were
robust, we subsequently performed differential analyses with both
AT(N) classification and CSF p-tau/Aβ42 ratio. We had access to
CSF p-tau/Aβ42 measures for 689 (of 717) CSF samples and 393
(of 490) plasma samples in the discovery study. Following the bio-
marker-based AT(N) classification (21), we obtained AT classifica-
tion of amyloid/tau positivity in these CSF and plasma samples
(Supplementary Materials and Methods). Of the 117 proteins asso-
ciated with clinical AD status, 97 were significant for CSF p-tau/
Aβ42, and 102 were significant for the AT(N) classification (see
table S11 for P values). There was a strong correlation between
protein changes by clinical AD status and those by biomarker-
based status (r = 0.86 and 0.88, respectively; P < 1.0 × 10−16; fig.
S9). Similar results were found for plasma (fig. S9 and table S12).
This high correlation indicates that the results found using clinical
AD status can be interchangeable with those using biomarker status
in this discovery study.
Prediction models based on brain, CSF, and plasma proteins
A prediction model (or predictive model) using protein markers is
critical for early diagnosis and monitoring disease progression. We
created prediction models based on the 8, 40, and 9 proteins that
were detected in brain, CSF, and plasma, respectively, and that
were replicated in external datasets while including sex and age as
covariates. The prediction model based on the eight brain proteins
provided high accuracy in distinguishing AD cases from cognitively
normal individuals: an area under curve (AUC) of 0.84 in discovery
and 0.99 in the independent MassSpec Joint data (Fig. 2, E and H).
The prediction model based on the 40 proteins detected in CSF pro-
vided an AUC of 0.89 in discovery and 0.90 in the Emory-ADRC
mass spectrometry replication study (Fig. 2, F and I). Because this
prediction model included too many proteins to translate into clin-
ical practice, we performed a stepwise model selection and identi-
fied a panel of 12 proteins (table S13). These 12 proteins provided
accuracy almost as high as all 40 proteins, leading to an AUC of 0.88
in discovery and 0.99 in replication data. This was significantly
higher than the AUC based on the well-known CSF p-tau/Aβ42
ratio (AUC = 0.81; P = 2.4 × 10−6). Using the same approach for
plasma, the prediction model based on the nine proteins led to an
AUC of 0.79 in both discovery and AddNeuroMed replication data
(Fig. 2, G and J). This was not statistically different from the AUC
with the CSF p-tau/Aβ42 ratio (AUC = 0.82; P > 0.05). The predic-
tion model based on each protein was similar between the discovery
and replication data (fig. S10).

Proteomic signatures of TREM2 risk variant carriers based
on brain, CSF, and plasma proteins
Several rare coding variants in TREM2 that increase risk of AD by
almost twofold have been identified (4). We therefore aimed to
identify proteomic signatures across brain tissue, CSF, and plasma
of individuals carrying AD risk variants in TREM2. Given the low
frequency of occurrence of different TREM2 variants, all of them
were combined into one group of TREM2 risk variant carriers.
We generated brain, CSF, and plasma proteomic data for 21, 47,
and 131 TREM2 variant carriers, respectively (Table 1), and com-
pared their protein abundances with those of cognitively normal in-
dividuals and patients with sporadic AD who did not carry any
TREM2 variant (Fig. 3, A to F).

In the brain, nine proteins (including α-synuclein) were altered
in TREM2 risk variant carriers compared with cognitively normal
individuals at the multiple testing–corrected threshold (Fig. 3A and
table S14). In addition, 23 proteins (including LRRK2) were altered
in TREM2 risk variant carriers when compared with other sporadic
AD cases (Fig. 3D and table S15). Five proteins [alanine amino-
transferase (ALT), heat shock protein 70 (HSP70), HSP70 protein
8, pituitary adenylate cyclase-activating polypeptide 27 (PACAP-
27), and proteasome subunit α type-1 (PSA1)] were commonly
found, indicating their distinct protein abundance across all three
groups (TREM2 variant carriers versus healthy controls versus
other sporadic AD cases). The external data included only four
TREM2 variant carriers in MAYO, seven in MSBB, and eight in
ROSMAP, which did not provide any statistical power to replicate
our findings. As we demonstrated, our study design is a viable alter-
native approach to identify proteins that would replicate in external
datasets, and we leveraged our data to identify those proteins that
replicate across brain tissue, CSF, and plasma. Of these 27
TREM2-associated proteins found in the brain (combining 9 and
23 proteins minus 5 commonly found), 11 were replicated only in
CSF, 6 were replicated only in plasma, and 5 [ALT, α-synuclein,
muellerian-inhibiting factor (MIS), LRRK2, and platelet-activating
factor acetylhydrolase (PAFAH) β subunit] were replicated in both
fluids (Fig. 3G). This represents a 74-fold enrichment (P = 7.5 ×
10−9) to what would be expected by chance.

In CSF, we identified 31 proteins altered in TREM2 variant car-
riers compared with healthy controls (Fig. 3B and table S16) and 10
proteins altered in TREM2 variant carriers compared with other
sporadic AD cases (Fig. 3E and table S17). Three proteins (nucleo-
side diphosphate kinase A, somatostatin-28, and thrombin) were
common. Of these 38 proteins (31 and 10 minus 3 commonly
found), 20 were replicated in the brain, 4 were replicated in the
plasma, and 7 [14-3-3E, 14-3-3 protein ζ/δ, somatostatin-28,
SMOC1, Ubiquitin+1, quinone oxidoreductase-like 1 (QORL1),
and calcineurin] were replicated in brain tissue and plasma
(Fig. 3G). This represents a 73-fold enrichment (P = 7.19 × 10−12)
to what would be expected by chance. In plasma, we identified a
total of 69 proteins: 65 proteins altered in TREM2 variant carriers
compared with healthy controls (Fig. 3C and table S18); 7 proteins
altered in TREM2 variant carriers compared with other sporadic
AD (Fig. 3F and table S19); and 3 overlaps [cysteine rich with epi-
dermal growth factor–like domains 1 (CREL1), Cripto, and propro-
tein convertase subtilisin/kexin type 7 (PCSK7)]. Among these 69
proteins, 24 proteins were present in the brain, 9 proteins were rep-
licated in the CSF, and 21 [including bone proteoglycan II, pappa-
lysin 1 (PAPP-A), ERK-1, and vascular cell adhesion molecule 1
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(VCAM-1)] were replicated in plasma (Fig. 3G), representing a 122-
fold enrichment (P = 5.47 × 10−38) to what would be expected
by chance.

We also created prediction models that could distinguish
TREM2 variant carriers from noncarriers in both sporadic AD
cases and controls for CSF and plasma. In CSF, the prediction
model based on the seven proteins replicated across brain tissue,

CSF, and plasma provided an AUC of 0.79 for distinguishing
TREM2 variant carriers from cognitively normal individuals
(Fig. 3H). The same model showed an AUC of 0.84 for distinguish-
ing TREM2 variant carriers from the other sporadic AD cases
(Fig. 3J). Although the CSF p-tau/Aβ42 ratio is a very good bio-
marker to distinguish AD cases from controls, no previous
studies examined how the CSF p-tau/Aβ42 ratio provides prediction

Fig. 3. Proteomic profiling of TREM2 variant carrier status
and replication across brain tissue, CSF, and plasma. (A to
C) Volcano plots displaying the log2 fold change (x axis)
against statistical significance (y axis) for all proteins tested for
differential abundance between TREM2 variant carriers and
healthy controls (CO) [in brain (A), in CSF (B), and in plasma
(C)]. (D to F) Volcano plots displaying the log2 fold change (x
axis) against statistical significance (y axis) for all proteins
tested for differential abundance TREM2 variant carriers and
sporadic AD cases without any TREM2 variants in brain (D), in
CSF (E), and in plasma (F). Although the top 10 proteins are
labeled here, the volcano plots in the web portal (omics.wustl.
edu/proteomics) support interactive exploration for all pro-
teins. (G) Summary showing identified and across-tissue rep-
licated proteins in three tissues. Multiple proteins showed
differential abundance in TREM2 variant carriers (compared
with controls or other sporadic AD cases), several of which are
replicated across tissue. (H to K) Tissue-specific ROC curves
show the performance of prediction models based on pro-
teins replicated across tissues [(H) and (J) in CSF and (I) and (K)
in plasma], including sex and age as covariates. “None” cor-
responds to the model including age and sex only, without
any proteins or other biomarkers.
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for TREM2 variant carriers. In this study, CSF p-tau/Aβ42 showed
an AUC of 0.74 for TREM2 variant carriers versus cognitively
normal individuals and 0.53 for TREM2 variant carriers versus
other ADs. Both AUC values from our TREM2-associated predic-
tion model with seven proteins were significantly higher than the
model based on the CSF p-tau/Aβ42 ratio (P < 1.6 × 10−5; Fig. 3H).

In plasma, our prediction model based on the 21 proteins repli-
cated across brain tissue, CSF, and plasma provided an AUC of 0.93
in distinguishing TREM2 variant carriers from healthy individuals
(Fig. 3I). Predictive performance was significantly higher than the
model based on the CSF p-tau/Aβ42 ratio (AUC = 0.69; P = 1.1 ×
10−3). Similarly, in distinguishing TREM2 risk variant carriers from
other AD cases, the prediction model based on the same 21 proteins
provided an AUC of 0.90 (Fig. 3K), which is significantly higher (P
= 1.5 × 10−4) than the AUC with the CSF p-tau/Aβ42 ratio (AUC =
0.63). Because the number of proteins is large, we performed a step-
wise model selection and found a subset of nine proteins (table S13)
that provided AUCs of 0.89 and 0.88 in distinguishing TREM2
variant carriers from cognitively normal individuals and from
other sporadic AD cases, respectively (Fig. 3, I and K). The predic-
tion models including age, sex, and APOE ε4 status as covariates
provided similar performance (fig. S11).

Proteomic signatures of ADAD
To identify proteins associated with ADAD status, we generated
proteomic data from the parietal cortices of 24 individuals carrying
pathogenic ADAD variants (19 individuals with PSEN1, 1 with
PSEN2, and 4 with APP variants) recruited from the DIAN and
the Knight ADRC studies. We identified 109 proteins altered in
ADAD mutation carriers when compared with cognitively
normal individuals with no brain pathology at the multiple
testing–corrected threshold (Fig. 4A). Because ADAD cases were
much younger than the cognitively normal control group, age was
not included in the model to avoid colinearity. However, this could
lead to false positives because some of the significant proteins could
be associated with age rather than ADAD status. To address this, we
identified 98 proteins associated with age in the control group at
nominal significance (P < 0.05; Fig. 4B and table S20). Of these
age-associated proteins, 17 (of 109) were associated with ADAD
status and excluded from any downstream analyses.

To validate whether the remaining 92 proteins were also associ-
ated with ADAD status in CSF, we analyzed CSF proteins from 289
ADAD mutation carriers and 184 noncarriers from the DIAN
study. Of the 92 proteins identified in brain, 89 passed QC in CSF
proteomic data, and 14 were altered by ADAD status in CSF in the
consistent direction (Fig. 4C and table S21), representing a 6.3-fold
enrichment (P = 4.88 × 10−8) to what would be expected by chance.
We next leveraged these 14 proteins to create potential prediction
models for distinguishing ADAD mutation carriers from noncarri-
ers. A prediction model using these 14 proteins in the brain provid-
ed an AUC of 1, fully separating ADAD cases from the healthy
controls (Fig. 4D). In CSF data, the same 14 proteins provided
higher predictive performance than the model with sex alone
(AUC = 0.86 versus 0.52, P < 2.2 × 10−16; Fig. 4E).

As presented earlier, we identified 12 proteins associated with
sporadic AD status in brain tissue (Fig. 2A and table S2). We also
sought to determine whether the proteins altered by sporadic AD
status showed similar alteration in individuals with ADAD. We
found that most of the proteins associated with sporadic AD

brains displayed even stronger alteration in ADAD individuals
compared with healthy individuals (table S22). The proteins associ-
ated with sporadic AD status showed 36% higher protein changes in
ADAD brain samples on average (P = 1.0 × 10−4; Fig. 4F). For
example, SMOC1 showed a significant association not only for
sporadic AD status (protein change = 0.04; P = 3.1 × 10−6) but
also for ADAD at a larger magnitude (protein change = 0.13; P =
2.3 × 10−6; Fig. 4G).

Similarly, other proteins, including SAP, HGF, CgA, and NET1,
were more dysregulated in ADAD compared with AD (Fig. 4, H to
K). As presented earlier, SMOC1was also associated in sporadic AD
status in both CSF (P = 8.4 × 10−29) and plasma (P = 0.002), sug-
gesting that it could be used to create a new prediction model
for AD.

Validation of SomaLogic data
We recently demonstrated that SomaLogic data correlated with
classic enzyme-linked immunosorbent assay (ELISA) for several
well-known CSF biomarkers (22). We found high correlation
(over 0.91) for NFL, neurogranin, and visinin-like 1 (VILIP-1). Pre-
diction for AD status based on the CSF SOMAscan proteins was
also comparable to that based on the ELISA markers.

To further validate our SOMAscan data, we examined the 150
proteins we identified across different platforms in samples from
the Emory, ADNI, and DIAN cohorts (tables S23 and S24). In the
Emory cohort, the overall correlation for the overlapping proteins
was 0.75 for CSF and 0.74 for plasma when comparing SomaLogic
versus mass spectrometry measures and 0.74 for both CSF and
plasma when comparing SomaLogic versus Olink (table S23).
Many proteins showed higher correlation, including SMOC1, α-
synuclein, and 14-3-3E (figs. S12 to S15). In ADNI, the overall cor-
relation for the eight proteins that overlap was 0.72 (fig. S16). Of
these proteins, GFAP, aldolase A (ALDOA), PRDX1, PRDX6, and
polyubiquitin K48 (UBB; fig. S16), all with very high correlation,
were replicated in CSF analysis using ADNI mass spectrometry
data (table S17). APOB was identified in our plasma analyses. For
the DIAN cohort, we found that the overall correlation for the over-
lapping 14 proteins were 0.79 (table S23). These proteins included
SMOC1 (identified in brain and CSF), osteopontin (SPP1), tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation
protein ζ (YWHAZ), and ALDOA (identified in CSF) (figs. S17
and S18).

Functional pathways
Last, we examined functional pathways for the proteins identified in
our study using Enrichr (23). As expected, the identified proteins
were enriched for the AD pathway (FDR = 1.9 × 10−2; Fig. 5A
and table S25), including Apo E (APOE), calcineurin [protein phos-
phatase 3 regulatory subunit B, α (PPP3R1) and protein phospha-
tase 3, catalytic subunit (PPP3CA)], and ERK-1 [mitogen-activated
protein kinase 3 (MAPK3)] (Fig. 5B and fig. S19). This finding sup-
ports our study design to identify and validate proteins for AD. In
addition to the AD pathway, the identified proteins altered in spora-
dic AD and TREM2 variant carriers were enriched for the Parkin-
son’s disease (PD) pathway (FDR = 2.1 × 10−12 for sporadic AD;
FDR = 1.4 × 10−4 for TREM2 variant carriers; table S25). Among
the proteins in the PD pathway, α-synuclein (SNCA) was altered
in both sporadic AD (P = 9.3 × 10−8) and TREM2 carriers (P =
5.0 × 10−4) compared with controls. Similarly, LRRK2 was altered
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Fig. 4. Proteomic profiling of ADAD status. (A) The volcano plots display the log2 fold change of protein abundance in brain (x axis) against statistical significance (y
axis) between individuals with ADAD and healthy controls (CO). (B) Volcano plots displaying the log2 fold change of protein abundance in brain (x axis) against statistical
significance (y axis) dependent on age. (C to E) Scatterplot of the 14 proteins replicated in CSF (C) and their predictionmodels in brain (D) and CSF (E). (F) Scatterplot of the
12 proteins associated with sporadic AD status. The y axis shows the effect of ADAD status on log-transformed protein abundance; the x axis shows the effect of sporadic
AD on log-transformed protein abundance. (G to K) Box plots for the select five proteins (SMOC1, SAP, HGF, CgA, and NET1).
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in sporadic AD (P = 8.3 × 10−9) and TREM2 carriers (P = 9.3 ×
10−6). We also found that identified proteins in sporadic AD and
TREM2 carriers were enriched for the innate immune system
pathway (FDR = 2.0 × 10−3 for sporadic AD; FDR = 8.4 × 10−3

for TREM2 carriers). In particular, proteins in sporadic AD were
enriched for the neutrophil-mediated immunity (FDR = 1.6 ×
10−6). The proteins in this pathway include osteopontin (SPP1)
and integrin a1b1 (ITGB1), among others.

The most strongly enriched pathways for sporadic AD were the
programmed cell death (FDR = 8.6 × 10−9) and intrinsic pathway
for apoptosis (FDR = 7.0 × 10−11), which included several 14-3-3
proteins (YWHAE and YWHAZ). This suggests that some of the
cell death associated with AD pathogenesis is regulated by apoptosis
and not due to necrosis, entosis, ferroptosis, or lysosomal-depen-
dent cell death. Signaling pathways, including the fibroblast
growth factor signaling pathway (FDR = 9.0 × 10−9) and epidermal

Fig. 5. Pathway enrichment for sporadic and genetically defined AD. (A) (Left) Dot chart illustrating several pathways shared across patients with sporadic AD, TREM2
carriers, and patients with ADAD. The size of the dot corresponds to the number of identified genes. The color of the dot corresponds to the FDR-corrected significance
(see table S25). (Right) The tile plot shows differentially expressed genes that belong to a specific pathway. A full list of 81 genes is shown in fig. S12. (B) The Venn diagram
shows the overlap of identified proteins across the three groups of AD: 56 externally replicated proteins for sporadic AD, 33 across-tissue replicated proteins for TREM2,
and 14 proteins replicated in DIAN CSF data for ADAD. Proteins and pathways described in (A) are highlighted. The most enriched pathways across three groups are in
boldface.
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growth factor (EGF) receptor signaling pathway (FDR = 8.7 ×
10−10), were also among the top pathways for sporadic AD.

The most strongly enriched pathway by TREM2-specific pro-
teins was cholecystokinin (CCK) receptor signaling (FDR = 5.4 ×
10−7). This pathway includes ITGB1, PPP3CA, YWHAB, and
MAPK3. CCK is a satiety hormone that is highly expressed in the
brain, including hippocampus. It has been shown that CSF CCK
was related to memory scores, higher CSF tau, and p-tau values
in the ADNI cohort (24). Other notable pathways related to
TREM2-specific proteins were amyloid fiber formation (FDR =
2.5 × 10−3), negative regulation of autophagy (FDR = 5.3 × 10−3),
and cellular response to cytokine stimulus (FDR = 5.7 × 10−3).

Pathways enriched by ADAD-specific proteins also pointed to
biological processes involved in this AD subtype. Notable pathways
were proteolysis (FDR = 3.2 × 10−3), negative regulation of cellular
process (FDR = 4.0 × 10−2), regulation of B cell proliferation (FDR =
2.7 × 10−2), and regulation of peptidyl-tyrosine phosphorylation
(FDR = 3.2 × 10−3). They include insulin-degrading enzyme
(IDE) and macrophage migration inhibitory factor (MIF), a proin-
flammatory cytokine involved in the innate immune response. IDE
is involved in the cellular breakdown of insulin and reported to be
involved in the degradation and clearance of naturally secreted Aβ
protein by neurons and microglia (25). These proteins were also en-
riched for the cytokine-mediated signaling pathway (FDR = 4.1 ×
10−2), indicating that inflammation also plays a role in ADAD.

DISCUSSION
We performed a proteomic characterization of sporadic and genet-
ically defined AD subtypes. In particular, we obtained proteomic
measures from Knight ADRC and DIAN cohorts and identified
proteomic profiles for sporadic AD, TREM2 variant carriers, and
ADAD cases in brain tissues, CSF, and plasma. These proteomic
profiles, replicated in independent datasets and across brain tissue
and fluids, were used to create specific prediction models and to
identify functional pathways. Our CSF-specific model for sporadic
AD provided higher predictive performance than that with CSF p-
tau/Aβ42 values (AUC = 0.88 to 0.90 versus 0.81; Fig. 2). The pre-
dictive performance using plasma proteins was similar to that of
CSF p-tau/Aβ42. These models were replicated in independent da-
tasets with different protein quantification, indicating that our
model is robust, reproducible, and reliable.

In addition, we demonstrated that (i) SOMAscan measurements
were in good agreements with mass spectrometry and OLINKmea-
surements, with an overall correlation coefficient of around 0.74
(table S23 and fig. S18); (ii) many proteins identified here showed
strong correlation, including SMOC1, α-synuclein (SNCA), 14-3-3E
(YWHAE), GFAP, and ALDOA (correlation >0.81; figs. S12 to S18);
and (iii) the correlation of these proteins between SomaLogic and
mass spectrometry or Olink was consistent regardless of cohorts
and tissue or fluid. Similar findings have been reported recently
by Dammer et al. (26). That these proteins replicated in multiple
mass spectrometry datasets and show a high correlation across plat-
forms not only strengthens our findings but also indicates that the
SomaLogic measurements are robust.

We created the prediction models for clinical AD status instead
of biomarker-based status because the latter was unavailable inmost
of the replication cohorts. The biomarker-based AT(N) status pro-
vides classification based on core AD pathophysiological features:

the Aβ pathway (A), aggregated tau pathophysiology (T), and neu-
ronal injury and neurodegeneration (N) (21). The AT(N) classifica-
tion identifies individuals in the presymptomatic stage of AD.
Because not all AT(N)–positive individuals develop cognitive im-
pairment, because some may carry protective factors (27), our pre-
diction models are optimized for symptomatic AD. AT(N)–based
models can identify individuals with AD pathology, not those
with clinical symptoms. We excluded any samples showing symp-
toms beyond AD. Because our controls may include presymptom-
atic individuals, we also performed analyses using CSF p-tau/Aβ42
and AT(N) as an outcome. The top proteins from these analyses
[with clinical status or CSF p-tau/Aβ42 or AT(N)] were the same,
and the effect size for all proteins was highly correlated in both CSF
and plasma (tables S11 and S12 and fig. S8), indicating that in the
Knight ADRC cohort using clinical status or biomarker-defined
status would lead to the same results.

Another advantage of using clinical status is the ability to
compare our model with CSF p-tau/Aβ42–based models (tables
S11 and S12 and fig. S8). We demonstrated that our model provided
higher performance than p-tau/Aβ42 in CSF and comparable per-
formance in plasma. Nakamura et al. (28) presented blood-based
biomarkers APP669–711/Aβ42 and Aβ40/Aβ42 for predicting Aβ pos-
itivity (AUC: 0.88 to 0.96). However, because several U.S. Food and
Drug Administration–approved therapeutic targets are developed,
non–Aβ-based biomarkers are needed to monitor target engage-
ment and treatment outcome. Zhang et al. (29) identified 11
plasma proteins for predicting Aβ positivity (AUC = 0.73), 2 pro-
teins for p-tau positivity (AUC = 0.67), and 7 proteins for AT clas-
sification (AUC = 0.77) in one cohort. Our model based on the nine
plasma proteins provided higher predictive performance (AUC =
0.79) in both discovery and replication cohorts. Palmqvist et al.
(30) created prediction models with plasma p-tau217, NFL, APOE
genotype, magnetic resonance imaging (MRI), and cognitive tests,
providing an AUC of 0.92 in the discovery dataset and 0.86 in the
replication dataset. The AUC for p-tau217 alone was 0.72 in the dis-
covery dataset and 0.78 in the replication dataset for predicting clin-
ical AD. The prediction power of plasma p-tau217 was similar to
those using CSF tau and Aβ42/Aβ40 (7–9). Our plasma models in-
cluding only basic demographic information (age and sex) along
with identified proteins provided comparable AUC (0.82 to 0.79)
as those using blood p-tau217 (30). Similar to Palmqvist et al.
(30) and others (7), we considered independent replication
cohorts to validate the model. Better prediction models could be
constructed by combining our proteomic profiles with MRI and
cognitive tests, as demonstrated in previous studies.

In this study, we identified Apo E (APOE), calcineurin (PPP3R1
and PPP3CA), and ERK-1 (MAPK3) associated with sporadic AD.
APOE is the strongest and most common genetic risk factor for AD
(31), and individuals with the APOE ε4 allele have lower CSF Aβ42
values (31) and lower Aβ42 clearance in brain (32). Genetic variants
in PPP3R1 have been associated with higher CSF p-tau values and
earlier age at onset (33).MAPK3 was also reported to be involved in
AD pathology (34), likely by affecting tau phosphorylation. Calci-
neurin and ERK-1 were recently reported as part of the causal
AD pathway by pQTL and Mendelian randomization analyses
(35). In addition, we identified α-synuclein and LRRK2 associated
with AD. On autopsy, around 30% of AD cases, including ADAD,
present with Lewy bodies, which are deposits of α-synuclein (36).
With the discovery of pathogenic mutations in LRRK2 causing
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autosomal dominant PD (37), LRRK2 has emerged as a promising
target for PD (38). Those reports, together with our analyses,
support the notion that there are pathological events and proteins
shared across neurodegenerative diseases, specifically in this case for
AD and PD. These findings could also help to develop markers to
identify AD cases with PD pathology without waiting for autopsy.

The most strongly enriched pathways for sporadic AD were pro-
grammed cell death (FDR = 8.6 × 10−9), the intrinsic pathway for
apoptosis (FDR = 7.0 × 10−11), the EGF receptor signaling pathway
(FDR = 8.7 × 10−10), and the neutrophil-mediated immunity (FDR
= 1.6 × 10−6), among others. The neutrophil-mediated immunity
includes osteopontin (SPP1) and integrin a1b1 (ITGB1). SPP1
was recently implicated in microglia activation and AD (39).
ITGB1 is a microglia gene and shown to be differentially expressed
in the hippocampus and peripheral blood mononuclear cells
(PBMCs) in AD (40), important in microglia activation (41), and
part of the causal AD pathway (42). Consistent with recent findings
that meningeal lymphatics and endothelial-specific proteins affect
microglia and AD risk (43), we found several endothelial-specific
proteins [ERK-1, SHC1, and basal cell adhesion molecule
(BCAM)]. This may be useful for fully understanding how
changes in brain endothelial cells and in the blood-brain barrier
contribute to the disease. The EGF receptor signaling pathway reg-
ulates growth, survival, proliferation, and differentiation in mam-
malian cells. Dysregulation of this pathway is associated with
white matter injury (44) and downstream to Aβ oligomers (45)
and prevents APOE4 and Aβ-induced cognitive and cerebrovascu-
lar deficits (46), suggesting that developing strategies targeting this
pathway may be particularly efficacious once Aβ pathology
is present.

We identified proteins that are altered in TREM2 risk variant
carriers and ADAD cases. TREM2 is a microglia gene, and activa-
tion of microglia results in their production of proinflammatory cy-
tokines such as interleukin-1 (IL-1), IL-6, and tumor necrosis
factor–α (TNF-α). Multiple proinflammatory [C-C motif chemo-
kine ligand 21 (CCL21), colony stimulating factor 1 receptor
(CSF1R), and IL-24] and anti-inflammatory [IL-1 receptor antago-
nist (IL1RN) and annexin A1 (ANXA1)] proteins are part of the
cellular response to cytokine stimulus, extending the number of
proteins that are part of the pathological pathways in TREM2 carri-
ers. Once individuals with specific genetic profiles are identified, it
is possible to create customized prediction models, an instrumental
step toward individualized, specific disease risk evaluation and
treatment. Integrating proteomic data with other omics (including
genomics, transcriptomics, and metabolomics) can help to better
understand the complex etiology of AD, further improving the dis-
covery of AD biomarkers and their use in clinical management, as
reviewed by Aerqin et al. (47). In addition, there may be different
downstream, and potentially causal, pathways leading to disease in
these individuals. For example, in TREM2 variant carriers, we found
a higher enrichment of the negative regulation of the autophagy
pathway (FDR = 5.3 × 10−3), which is also involved in cell death
and seems to play a major role in AD pathogenesis in TREM2
variant carriers based on our own analyses. Other unique pathways
were CCK receptor signaling (FDR = 5.4 × 10−7) for TREM2 risk
variant carriers and, for ADAD cases, proteolysis (FDR = 3.2 ×
10−3) and regulation of peptidyl-tyrosine phosphorylation (FDR
= 3.2 × 10−3). These findings highlight the role of these biological

processes and their relationship to TREM2 and ADAD downstream
pathological events, which may represent new therapeutic targets.

The strengths of this study are relatively large sample sizes, rep-
lication of proteins associated with sporadic AD cases in multiple
external datasets generated using orthogonal proteomic methods,
and uniquely identifying proteins associated with the genetically
defined AD cases. However, there are several limitations. First,
several AD biomarkers in CSF and plasma, including Aβ42/Aβ40
ratio, p-tau217, and p-tau231, which provide good performance,
were not available in our samples. Therefore, we were not able to
compare our predictionmodels with the models based on these bio-
markers. Second, to replicate our findings, we sought multiple ex-
ternal datasets (Supplementary Materials and Methods). Because
the proteomic data available in these studies were generated using
a different platform (OLINK and mass spectrometry), not all pro-
teins identified during discovery were assayed. In addition, several
replication datasets had smaller sample sizes than our discovery
dataset, providing limited power. The replicated proteins therefore
likely represent only a subset of proteins associated with AD status.
Third, genetically defined AD cases (TREM2 variant carriers and
individuals with ADAD) are extremely rare. There were not
enough carriers (four TREM2 variant carriers in MAYO, seven in
MSBB, eight in ROSMAP, and no ADAD cases) in public datasets,
and we were unable to pursue replication of the proteins dysregu-
lated in these genetically defined AD cases. Fourth, we performed
very stringent QC (Supplementary Materials and Methods).
Because of this, not all proteins passed QC across brain tissue,
CSF, and plasma. This limited replications and should be accounted
for in future studies.

In summary, we identified previously unidentified proteins and
pathways implicated in sporadic and genetically defined AD. We
also demonstrated that, by leveraging proteins associated with AD
status commonly across brain tissue, CSF, and plasma, one could
validate and confirm potential new markers for AD. Although ad-
ditional validation of some of our findings will be needed, these
results highlight the need to combine brain tissue, CSF, and
plasma proteomics to fully understand the biology of AD and to
create prediction models for individuals with AD with specific
genetic profiles.

MATERIALS AND METHODS
Study design
The goal of this study was to identify brain-, CSF-, and plasma-spe-
cific proteomic profiles for sporadic AD and genetically defined AD
cases (Fig. 1). This study included the brain (n = 360), CSF (n =
717), and plasma (n = 490) data from the Knight ADRC (10) and
the DIAN (3) cohorts. The recruited individuals were evaluated by
Clinical Core personnel of the Knight ADRC (see Supplementary
Materials and Methods). Brain samples were obtained from 290
autopsy-confirmed AD cases, 21 TREM2 risk variant carriers, and
25 cognitively normal individuals with no brain pathology
(Table 1). CSF samples were from 176 individuals with a clinical di-
agnosis of AD, 47 TREM2 risk variant carriers, and 494 cognitively
normal individuals. Plasma samples were from 105 individuals with
a clinical diagnosis of AD, 131 TREM2 risk variant carriers, and 254
cognitively normal individuals. In CSF and plasma data, AD cases
had a diagnosis of dementia of the Alzheimer’s type (DAT) using
criteria equivalent to the National Institute of Neurological and
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Communication Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association for probable AD (48). In addition,
we obtained the brain samples from 24 individuals carrying
ADAD mutations, of whom 18 were from the DIAN cohort.
Among these individuals with ADAD, 19, 1, and 4 carried patho-
genic mutations in PSEN1, PSEN2, and APP, respectively. The In-
stitutional Review Board of Washington University School of
Medicine in St. Louis approved the study, and research was per-
formed in accordance with the approved protocols.

Proteomic data
For omics characterization in brain tissue, CSF, and plasma, we
quantified 1305 proteins using a multiplexed, single-stranded
DNA aptamer assay developed by SomaLogic (11). The assay
covers a dynamic range of 108 and measures all three major catego-
ries: secreted, membrane, and intracellular proteins. The proteins
cover a wide range of molecular functions and include proteins
known to be relevant to human disease. Aliquots of gray matter ho-
mogenate (150 μl) of tissue were provided to the Genome Technol-
ogy Access Center at Washington University in St. Louis for protein
measurement. As previously described (11), modified single-
stranded DNA aptamers are used to bind specific protein targets,
which are then quantified by a DNAmicroarray. Protein concentra-
tions are quantified as relative fluorescent units (RFU) of intensity
in this DNA microarray. We performed standard data processing,
normalization, and extensive QC (see Supplementary Materials
and Methods).

Validation of SomaLogic data
To further validate our SOMAscan data, we examined the consis-
tencies of protein abundance of the 150 proteins we identified
across different platforms in samples from the Emory, ADNI, and
DIAN cohorts. In the Emory cohort, 35 samples had CSF and
plasma proteomic data measured in SOMAscan, Olink, and mass
spectrometry (2). The ADNI and DIAN cohorts had 110 and 457
samples, respectively, which were measured in both SOMAscan
and mass spectrometry in CSF (table S23).

Pathway enrichments
Functional enrichment analysis was performed with Enrichr (23).
Within each AD subtype, we merged all proteins identified and val-
idated across brain tissue, CSF, and plasma. The genes that target
these merged proteins were used as an input for enrichment anal-
ysis. This corresponded to 62 genes (targeting 56 externally replicat-
ed proteins) for sporadic AD, 37 genes (targeting 33 proteins
replicated across brain tissue, CSF, and plasma) for TREM2
variant carriers, and 14 genes (targeting 14 proteins replicated in
independent DIAN CSF data) for ADAD. Among multiple gene
set libraries, KEGG (Kyoto Encyclopedia of Genes and Genomes),
Reactome, Panther pathways, and GO biological process were con-
sidered. The significance of functional enrichment was reported as
the P value of Fisher’s exact test, followed by Benjamini-Hochberg
adjustment for FDR in testing multiple hypotheses. We considered
results with FDR < 0.05 as significant and included them while cre-
ating the dot chart and tile plots to graphically display our findings.

Statistical analysis
To remove batch effects in our proteomic data (17 batches in brain,
50 batches in CSF, and 27 batches in plasma data) and correct for

other unmeasured heterogeneity, we performed SV analysis using
the sva (12) R package. We used the sva function with AD status
(variable of interest) and age at measurement (variable to adjust).
We obtained the number of resulting SVs as 10, 32, and 14 in
brain, CSF, and plasma, respectively, using the num.sv function
with the default permutation approach.

To obtain proteomic signatures of sporadic AD status and
TREM2 risk variant carrier status, we performed differential abun-
dance analysis using the following linear regression model.

Log10ðprotein abundanceÞ ¼ Statusþ Ageþ Sexþ SVs

The protein abundance was log10-transformed to follow the
normal distribution. Status corresponds to 1 for sporadic AD
cases and 0 for cognitively normal individuals in the analysis of
sporadic AD cases. In TREM2 analysis, status corresponds to 1
for TREM2 variant carriers and 0 for cognitively normal individu-
als. We also ran an analysis with TREM2 variant carriers (as 1) and
individuals who were diagnosed with AD dementia but did not
carry any TREM2 or autosomal dominant variant (as 0). Age cor-
responds to the age at death (in brain tissue) or the age at measure-
ment (in CSF and plasma). SVs corresponds to the resulting
number of SVs (10 in brain tissue, 32 in CSF, and 14 in plasma).

For ADAD status, we performed analysis using

Log10ðprotein abundanceÞ ¼ ADAD statusþ Sexþ SVs

where ADAD status corresponds to 1 for ADAD mutation carriers
and 0 for cognitively normal individuals with no brain pathology.
Age was excluded because it was confounded with ADAD status.
ADAD individuals were much younger than the control group
(56 versus 88 years old on average). Because of confounding
between age and ADAD status, we performed analysis using

Log10ðprotein abundanceÞ ¼ Sexþ Sexþ SVs

within control group only. Any proteins showing changes with age
in the control group (with nominal P < 0.05) were excluded from
our ADAD findings. To check whether SVs actually removed
batch and covariate effects, we also tested whether the residuals
(after SV adjustment) still had batch and covariate effects. We
found that all batch effects had been removed after SV adjustment
(fig. S4).

To check the sensitivity of our analysis based on SVs, we also
performed an analysis using

Log10ðprotein abundanceÞ ¼ Statusþ Ageþ Sexþ PlateID

where PlateID corresponds to the technical batch effects. We found
that the effect estimates between the two analyses were very similar
in the analysis for sporadic AD status (correlation = 0.61 in brain,
0.90 in CSF, and 0.91 in plasma; fig. S3A). Although they showed
less similarity in TREM2 analysis, the results at the top proteins
were more consistent.

To compare brain AD status and neuropathological characteris-
tics, we performed analyses using Braak neurofibrillary tangle
scores and CDR at death in brain data while including the same co-
variates (fig. S6). To compare clinical and biomarker-based AD
status in CSF and plasma, we performed analysis using CSF
pTau/Aβ42 ratio and the corresponding AT classification in both
CSF and plasma data (fig. S8). On the basis of CSF Aβ42, Aβ dep-
osition (A+ versus A−) was determined by dichotomization of a
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mixture of two Gaussian distributions with the “mclust” package (V
6.0.0) in R. Tau deposition (T+ versus T−) was similarly determined
on the basis of CSF pTau. For the analysis with AT classification, we
considered individuals with A+T+ (both deposition) or A−T− (no
deposition) by excluding A+T− or A−T+.

We examined the consistency between effect sizes of AD status
and AD neuropathology in brain (or biomarkers in CSF and
plasma) through the scatterplots. We performed correlation tests
using cor.test in R to test association between effect sizes with Pear-
son’s product moment correlation coefficient and two-sided alter-
native hypothesis.

For age at onset for all three tissues, we performed survival anal-
ysis while considering age, sex, and SVs as covariates (fig. S5 and
table S3). We created a survival object using the R function Surv
and performed a Cox proportional hazards regression model
using the coxph function.

To determine a multiple testing correction threshold for the pro-
teomic data in each tissue, we performed an analysis of principal
components (PCs). We found that 75, 169, and 230 PCs in brain,
CSF, and plasma data, respectively, explain 95% of the variance of
proteomic data after QC. We chose a multiple testing–corrected
threshold as 0.05 divided by this number of PCs. The thresholds
corresponded to 0.67 × 10−4 in brain, 2.96 × 10−4 in CSF, and
2.21 × 10−4 in plasma. When we applied our multiple testing cor-
rection and FDR, we found that the use of our thresholds usually
provided fewer significant results and is thereforemore conservative
than the use of FDR (table S26).
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